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SPATIALANALOG OF CENTERED RIEMANN AND 

PRANDTL--MEYER WAVES 

V. M. Teshukov UDC 533.6.011+527.985 

In this paper, we prove the existence of solutions of equations of spatial gasdynamics 
that have special properties: waves, centered on arbitrary two-dimensional surfaces in four- 
dimensional space x, t. These solutions are generalizations of the centered Riemann waves 
in the theory of one-dimensional nonstationary motion and centered Prandtl--Meyer waves in 
the theory of planar stationary flows. Characteristics of this form arise in problems of 
the interaction of shock waves with fronts having arbitrary shapes, interaction of shock 
waves and a contact discontinuity, and piston problems. 

I. Formulation of the Problem. We are examining equations that describe the spatial 
instability of flow of a nonviscous, nonthermally conducting ordinary gas [l~ 2]: 

du t V p =  dp 2"" ~ dS ~+~ O , ~ + O c  a ~ v u = v , ~  O, p = $ ( p ,  S), (~.1 

where u is the velocity vector; p, pressure; P, density; S, entropy; c, velocity of sound; t, 
time; x =(x, y, z), radius vector of a point in R3; 7 = (~/~x, ~/~y, ~/~z); d/dr = 3/3t + 
u-V. The function ~(p, S), which gives the equation of state of the ordinary gas, is assumed 
to be analytic. 

A centered wave is a solution of the system (1.1) whose domain is covered by a single 
parameter family of acoustic characteristics passing through the given two-dimensional sur- 
face ?0~E 4= R 3 • R (x~R 3, t~H).. In this case, the wave is said to be centered on Yo. 

In what follows, we examine the problem of a piston. Assume that the solution of system 
(l.l), satisfying the impermeability condition u-Vh = 0 on F is given in a half space, whose 
boundary F is given by the equation h(x) = 0 (Vh=i=O), is determined for O~t~t o This solu- 
tion in what follows is called the unperturbed solution. A perturbation propagating along F 
arises at time t = 0 at the point Q~F: the lateral wall begins to buckle according to a 
definite law so that outside the buckled part, it is given by the equation h(x) = O, while in 
the buckled part r', it is given by equation hi(x, t) = 0. It is assumed that hl > 0 in the 
region occupied by the gas, h~t > 0 on F', and the surfaces h(x) = 0 and hi(x, 0) = 0 are 
tangent at the point Q. The intersection of F and r' forms an edge which moves according to 
a given law along F. Let Yo be a two-dimensional surface and E 4 , traced out by this edge in 
time (Fig. 1 shows a picture illustrating the two-dimensional case). The unperturbed solu- 
tion will describe a gas flow in the region bounded by the acoustic characteristic F~ (~(x, 
t) = o) 

�9 t + u . , v ~ + c t v ( ~ l  = O, (1 .2)  

passing through u (~ > 0 in the region of unperturbed motion). It is necessary to find the 
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F i g .  1. 

p e r t u r b e d  s o l u t i o n  in  t he  r e g i o n  bounded by Ft and F ' ,  c o n t i n u o u s l y  a d j a c e n t  a l o n g  r t  to  t he  
u n p e r t u r b e d  s o l u t i o n ,  s a t i s f y i n g  the  i ~ e r m e a b i l i t y  c o n d i t i o n  on r ' :  

hit + u ' v h x = O .  (1 .3 )  

Due to  t he  f a c t  t h a t  t he  m a t c h i n g  c o n d i t i o n s  f o r  d a t a  a r e  n o t  s a t i s f i e d  on F'  and r l ,  a 
c e n t e r e d  wave a r i s e s  on 7o.  I t s  domain i s  bounded by the  a c o u s t i c  c h a r a c t e r i s t i c s  F1 and 
F2, passing through 7o. The limiting value of u on Yo along F2 will satisfy (1.3). After 
finding thecentered wave, it remains to solve the mixed problem without singularities with 
data on F', F2. 

It is well known that a stationary centered Prandtl--Meyer wave is a supersonic flow. 
Here, the analog of this fact is that the centered wave can be constructed in the vicinity 
of those points Yo which move along F' relative to gas with supersonic velocity in a direc- 
tion nor~l to the cross section Tot of the surface 7o by the surface t = const. The coin- 
cidence of the velocity indicated with the velocity of sound corresponds to the appearance 
of points on 7o, in which the characteristic strips of Eq. (1.2) are tangent to 7o. 

2. Transformation of the Equations. In the centered wave region, new independent vari- 
ables"T, ~, ~, y will be introduced with the help of the s~stitution x = x(T, $, B, 7), t = 
t(T, B, y). The functions x(T, ~, ~, 7), t(T, B, 7) are defined as the solutions of the 
Cauchy problem: 

x , = f , t , = l ,  xl~=o=Xo(~,7),tl~=o=to(~,~). (2 .1 )  

The equations x = xo(~, y), t = to(B, 7) parametrically define 7o; it is assumed that this 
mapping is mutually unique on 7o, IXo~[~ 0, Ix0v[~0, Ix0~ • x0vl~0 (here and in what follows, 
a • b is the vector product of a and b). At the point Q, where yo is tangent to the plane 
t = 0, to~ = toy = 0. The function f is chosen so that for fixed ~ the equations x = x(T, ~, 
~, T), t = t(T, B, y)give the acoustic characteristic passing throu~ 7o (0~ ~ {, ~ 0  
corresponds to FI, and ~ = 1 corresponds to F2). In view of (1.2), this requirement gives 
the relation 

(f--n).((x~--tfl)•215 
which will be satisfied if f is taken in the form 

f = u +c(Ivl2+2i[kl~)[vl"2(Iv]~--]kl~c~)-l/2.v--2ilv[-2(k • v), ( 2 . 2 )  

where v = (x~ -- t~u) • (x~ -- tvu); k = t~x v -- tvx~; i = e + pp-t; is the specific internal energy 
of the gas. Expression (2.2) is meaningful for Iv[ >cIk I. The centered wave will be con- 
structed in the vicinity of those points Yo, where the unperturbed solution satisfies the 
inequality I~ i- i k l c l v l - l ~  ~ > 0  ( O l = r  . In view of the fact that at the points Q, 
t~ = t 7 = 0 and therefore, k = 0, the required inequality is alw~s satisfied in the vicinity 
of the point Q. The equality Ivl = Ik[c corresponds to the line yot moving at the velocity 
of sound along the wall relative to the gas in a direction normal to it. For large t, the 
centered wave disappears and another singularity appears on 7o. According to (2.1), the s~- 
stitution of varifies is degenerate on 7o, since x~(0, ~, B, T) = 0. Let us represent x ~  
the form x~ = ry. In s~stituting varifies in (I.I), the equations 

o~=~+f.V, ~=~y.V,~=t~+xvV,~=t~+x~.V 
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and the resulting relations 

~/dt = 0/0% ~- (u -- [)" V, V = J-l{t(xv -- ty[) X y]010~ q- (y • k)0 /0z  q- 

q- [y • (x~ - -  t~f)]O/O? + T-I[(x~ - - t ~ f )  • (x v - -  tvi)]O/O~} , 

where J = y[(xs -- tBf) • (xv -- tyf)], are used. After some transformations, 
in the form 

( I . 1 )  is written 

(xt~ - -  tf~u)u~ - -  tf~9-1p~ - -  ~ [ ( y . v ) ( I v l  s - -  }kl2cS)Vs(lvlsc A- ( 2 . 3 )  
-4- 2 i c l k [ 2 ) - ~ . ( ( x ~  - -  t~u)u~  - -  t~p-~p~) -}- A~U~ + A s U v ]  = 0 ,  

(x~ - -  t v u ) u r  - -  tv,o-~p~ - -  �9 [ ( y .  v ) ( I v  I s - -  [k lace)i/s( Iv I~c + 

+ 2iclklS)-~((xv - -  t~u)u~ - -  tvp-~p~) + B~Ut~ + BsU~I = 0, 

Se - -  x [ ( y . v ) ( l v l  s - Iki~cs)~/~(lvl~c + 2iclklS)-lS~ -[- DIS B -~- D~Svl = O, 
v . u ,  + (Ivl" --IklZc~)VSp-~c-Xp, + ExUI~ + EsU ~ = O, 

�9 " u~ (IriS - Ikl%S!V2p-Xc,Xpe - -  ~:[((y.v)~-- c~(y • k)~)(2cd)-X(Iv I ~ - -  

- - lk l%2)-V~(v .  u ,  - -  (Ivl s - Ikl~cs)V~p-Xc-~p~) + FiUI~ -[- FsU~] = 0 .  

H e r e ,  O i n d i c a t e s  t h e  v e c t o r  s o l u t i o n  w h o s e  c o m p o n e n t s  a r e  p ,  S ,  a n d  t h e  c o m p o n e n t s  o f  u ;  A i ,  
B i ,  E l ,  F i a r e  v e c t o r  a n d  D i a r e  s c a l a r  f u n c t i o n s  o f  t h e  v a r i a b l e s  U, xi3, x u  y .  F o r  z = 0 ,  
it follows from (2.3) that the quantities S,a = (x~.u) -- t~(2-Xlul~ q - 0, b = (x~.u) t~(2-~lh[ s q- i) 
are conserved when passing through the centered wave at the fixed point Yo (S~ = a~ = b~ = 0 
with r = 0). Let us introduce the quantities 8 and H: 

P 

t g [ k  I 0 - -  I k l (u.m) ~' IS  - -  I k I ~ (c ~ + 20  (p', S)]~! ~ alp" (v .m)  ' m = xl~Xxv,  H ( p ,  S, B) . . . . . . . . . .  - -  
oJ p(p' ,  g)c(p ' ,  3 ) ( B - - 2 1  kl=/,(p,,  S)) 

a n d  r = 0 q-  H(p, S, [v[s + 2[kl*"0, l = 0  - -  It(p, S, [vl 2 + 21klSi). F r o m  t h e  l a s t  e q u a t i o n  ( 2 . 3 ) ,  i t  
f o l l o w s  t h a t  f o r  ~ = 0 l ~  = 0 ,  ( i n  v i e w  o f  t h e  f i r s t  e q u a t i o n s  (Iv] ~ + 2 i i k l a ~  = O a t  z = 0 ) .  I t  
is evident that the change in [k[ 0 characterizes the angle of rotation of the vector v in a 
plane orthogonal to k, when passing through the centered wave. For [kl § 0, 8 _+ H § Iml-1• 

unq- 9-1c-ldp , where Un = (u'm) Iml -I. If at a point on the surface Yo with coordinates ~, 

y are given, then all the possible states 60, po, So, ]vol = + 2ioIkI=, k, obtained by a tran- 
sition with the help of the centered wave, lie on the curve 

0 - -  H ( p ,  8 o ,  lv~  ~ q-  2 io lk[  ~) ----00 - -  H(po ,  So, ]vol 2 q -  2 i0 lk]  2) ( 2 . 4 )  

in the plane (8, p). This curve is uniquely projected on the 8, p axes. Giving either 0 or 
p on Yo on the other side of the wave permits determining all quantities behind the wave. In 

--I the piston problem, 8o = 0, |im(u.n)Irz----(--hlt.IVhll )r~,~=0~ where n----vh1.1vhi[ -I, is given on 
~-rO 

Yo. Since F' is the contact characteristic, n = v'Ivl -I Then (u.n) = (u-m)'Iv[ -I = [m I [kI -I 
sin IkIS. Therefore, ]imOlr =0~(~,~?) is given on Yo. The existence of a centered wave will 

T--~O 

be proved when the following restrictions 2 ~ are satisfied: 

~ 3  - -  H(po,  S0,1vol s A- 2i01k[ 2) ~< 0s(fi, ?) < - - 6 s ,  

w h e r e  ~ 2 ,  ~3 a r e  p o s i t i v e  c o n s t a n t s .  T h i s  i n e q u a l i t y  g u a r a n t e e s  a n o n z e r o  w a v e  a m p l i t u d e  
(0s ~- Os)and absence of a vacuum (~im0PIr2>0). 

Let the unperturbed solution, the surfaces F, F' and yo be analytic and inequalities /~ 
2 ~ be satisfied. 

THEOREM. There exists a centered wave analytic for 0 < T ~To (To > 0) in the vicinity 
of yo, continuously touching the unperturbed solution along the acoustic characteristic F~ 
such that the limiting value of 8 along F2 with T § 0 coincides with the given analytic func- 
tion 82(B, y). 

3. Existence of a Solution in the Class of Formal Power Series. The quantities r, 7~j 
a~ b, S, x, y, z = x~, w = xy are the functions sought. The value of 8z(~, Y), according to 
Sec. 2, is determined by r2(B, y), the limiting value of r along F2 with T = 0. We set 

rl~=o ( t  - ~)ro([~, ~,) + ~ - ~r .(~,  ~), (3  I )  
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~;here ro(B, ~,) is the value of r at T = ~ = 0, which is known from the conditions of con- 
tinuous touching. The conditions for continuous touching on F I have the form 

~1~=o = Zo('~, ~, v), al~=o = ao('r, ~, V), bl~=o = bo(',:, ~, % (3 .2 )  
S I~=o = S # ,  ~, V), 

where ~o, ao, bo, So are given analytic functions. We shall reduce the boundary conditions 
to homogeneous conditions, by replacing the functions sought: 11 ~- I -- 10, al ---- a -- a o, b~ ----- b -- bo, 

S 1 = S - -  So ,  x 1 = x - - x  0, w ~  = w - - x o v  , z l  = z - -  Xo~ , r l ~  r - -  ( t  - -  ~ ) r o ( ~ , ~ ) - -  ~r2 (~ ,  7 ) -  In  
view of (2. I) and (2.3), we can compute Y0(~, ~, 7) = Ylx=0 = (iv[ ~ + 2ilkl=)(Ivl = -- lkl2ce)-3/2ip-ic-~pr + 
cr )vlx=0. Let us set y~ = y -- yo. We now have a problem with homogeneous boundary conditions 
for the following system of equations: 

al~ = %[Niaix + AiiV~ + Ai2Vv + Ala~IB-~ Aia]' (3.3) 

b l r  ~[Nlblx + B11V~ -~ BI~V v ~- B13~1 ~ Jr- Bla], 

$1r : T[NiSix + DnV~ + D12Vv + Dl3], 

/it = *[N~/i~ + FiiSl~ + Fl~al~ + Fi3bi, + FlaV~ 

fix --~ EllSlX + E12alx ~, ElZbXX -q- E~aV~ + EI~V ~ -4- El~, 

X l x  = G1,  WlX = GzV fi -{- G ~ V ~  -4- 6 4 ,  Z l ,  = G~VI~ - ~  G e V ~ + G 7 ,  

+ Qol~x + QTV~ -~ QsVr + QgYlI~ ~- Qloy~v + Qn],  
= 0:  a~ = b I = S I  = l i = 0 ,  z = 0:  r I = 0 ,  x 1 = w 1 = z x = 0 .  

Here ,  V i s  t he  v e c t o r  s o l u t i o n  w i t h  components  a~ ,  b l ,  S~, ~x, r l ,  x~,  w~, z~; t h e  c o e f f i -  
c i e n t s  A~i ,  B~i ,  D l i ,  F~ i ,  E~i ,  Gs Qi ,  Ni depend a n a l y t i c a l l y  on V, y~,  5', ~, $, y .  We 
n o t e  t h a t  Q~, Q2 do no t  depend on y~ ,  Q~l~=o = 0,  

(y-v) (I v}~-  I kl ~ c~) 1/~ N = (?'v)~-- c~ (Y• 

In  o r d e r  to  c o n s t r u c t  a s o l u t i o n  i n  t h e  form o f  f o rm a l  power s e r i e s  w i t h  t h e  v a r i a b l e s  
T, ~ -- $I, ~ -- $i, ~{ -- ~/I, where ~, 8x, ~ are the coordinates of an arbitrary point in the 
plane ~ = 0, it is sufficient to calculate all derivative solutions at this point. 

LEMMA. Derivative solutions are determined uniquely from the equations and the boundary 
conditions. 

Proof. According to See. 2 (3.3), the functions sought vanish at ~ = 0. Let us assume 
that at �9 = 0 all derivative solutions of order (j -- I) are known. Then, differentiating. 
themwith respect to g, B, T, it is possible to find all derivatives of order j, except 3]/ 
~YJ. The first four equations (3.3) can be represented in the form 

ai~ - -  xL(~)a~x = xOgl, bmr - -  "rL(~)bix = xO~, ( 3 . 4 )  

Sl~ - -  "vL(~)Svr = xO3, li~ - -  2-~L(~)l ix  = x(I)~, 

where L(~) = I(P-lc-lPr ~- ce)lvF"(clvl z - -  Ikl~ca) -x] (0, ~, ~ ,  ~ )  = Nd0,  ~, ~ ,  W) = 2N~(0, ~, ~ ,  ~x). From 
(3.4), we obtain an ordinary differential equa,tion for Oia~/'O~i(~=o: 

0~ ~L (~) o~/~--o = J ~ r  I~=0. 
Then, 

0~al( 0, fl, ~1, Y 1 ) = ]  ---F'-~-~ �9 r  0, i t, ~1, Y1)exP ] L ( i " ) d i  ~ di ' .  (3 .5 )  
0%J �9 

o 

Analogous  e q u a t i o n s  a r e  o b t a i n e d  f o r  3 J b l / 3 T J ,  3 J s 1 / 3 T J ,  3 J l l / 3 T  j .  These e q u a t i o n s  p e r m i t  
determining the derivatives indicated in terms of known quantities. The remaining deriva- 
tives are calculated from Eq. (3.3). The lemma is proved. 

4. Majorant Problem. Here we shall indicate a problem whose solution will give the 
majorants for the previously found formal series in the vicinity of an arbitrary point T = O, 

= 51, ~ = Bi, T = ~i- As in (3.5), we obtain an equation 
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aJ+~+'a 1 (0, ~, 1~1, ?~) ~, a i - i +~+ -~  
a~Ja~may n = ] axJ_la~may n (0, ~', J31, Yl) exp ] L(~") d~" d~'. (4. I) 

o 

In view of the conditions 2 ~ L(~) < -04 (04 > 0). Then, from (4.1) follows the estimate 

oJ+m+nal i I #J--l+m+n(I) r 
l aTJa~ma?n (O, ~l, ~1, "~1) I (4 ~ m~x I axi_lo~ma? ~ (01 ~, ~l, Yl)]. .2) 

Analogous estimates for the derivatives bl, $I, ~i are obtained from (3.4). The majorant 
system of equations is constru'cted as follows: the coefficients of equations (3.3) are re- 
placed by their majorants unifom-n with respect to ~, i.e., analytic functions, whose expan- 

sion coefficients in a power series in a neighborhood of the point V = 0, y~ = 0, B = BI, 
Y = YI, T = 0, ~ = ~ are not less than maxima with respect to ~ of the moduli of the corre- 

sponding expansion coefficients of the starting functions at the point V = 0, yl = 0, B = BI, 
Y = Yz, T = 0, ~ (0~< ~ I). 'The existence of such majorants for the coefficients of the 
system (3.3) can be established with the help of Cauchy's integral equations for analytic 
functions of many variables. In addition to these equations, we examine one more group of 
equations : 

Oa~ ~ ab~ aS 2 al~ 
a--~- = ~ ' ~  = ~ -b-U = ~ ~-  = 2~ ( 4 . 3 )  

In these equations, the right sides ~2i are constructed according to ~i as follows: in ~i, 
a~, bl, $I and l~ are replaced by a2, b2, Sz and Z2, and then the coefficients in front of 
the derivatives are replaced by their uniform, with respect to ~, majorants as in the pre- 
ceding case. The boundary conditions of the majorant problem are: 

"r = O: r i m =  a.2 = b2 = So = 12 = 0 ,  x l r  a = W l m =  Zlm = 0 ;  

= ~1: a l m - - a ' ,  = b x ~ - - b 2  = S i ~ - - S 2  = l ~ - - l ~  = 0 .  

H e r e ,  r lm ,  a~m, and so on a r e  m a j o r a n t s  o f  r ~ ,  a ~ ,  and so  on.  

All the derivatives of the solution of the majorant problem are determined uniquely. 
From the method for constructing the majorant equations and (4.1)-(4.3), it follows that 
these derivatives are not less than maxima with respect to ~ of moduli of the derivative 
solutions of the starting problem, calculated with T = {3 -- BI = Y -- Y~ = O, 0~< ~ i  . The 
majorant problem can be simplified. We shall reduce the boundary conditions to homogeneous 
conditions by the substitution ~a = ~m-- ~, b~ = b~ m- b=, Sa = Sxm -- Sz, L~ = ~'-m-- ~. 
Then, Eqs. (4.3) can be solved for a2%, b2%, S2T, ~=~, since these derivatives enter on the 
right sides with a coefficient that vanishes at [3 -- 131 = Y -- Tz = O. Groups of similar 
equations are replaced by a single equation, introducing the overall majorant A for functions 
g=, b2, $2, ~z, overall majorant B for functions a~, ba, Sa, ~, overall majorant P for func- 

tions rlm, X~m, Wlm, Zlm, overall majorant Y for functions Y~m. Equations for the overall 
majorants are obtained by summing the equations for a group of one type of equation. Inde- 
pendent variables enter into the majorant equations as combinations of T, ~ = ~ -- ~, 6 = 
(~ -- ~i) + (Y -- u so that the solution will be sought in the class of functions depending 
on ~, ~, ~. The simplified majorant problem has the form 

(4.4) 

P~ = MoB~ + MTA~ + MsP~ ~ M~B~ + 3Ilo, 
B;  --  M11A; "-I- T(3/lO_.B,r -t'- ~]41:1A6 -'}- MllP6 -}- M15B6 "~- 3I~oY~ + 

Av ~/17), TY'r @" Y = M~sP; + 311~A + 21I~oP + ~]GtB + ~r(31.2oBx -t- 
+ M~3A~ + 3/I~P~ + M.~B~ + 21,levi % + M~7), 

5. Invariant Majorants. In proving the existence of analytic majorants, a major diffi- 
culty arises due to the fact that the last equation in (4.4) with respect to Y at T = 0 is 
degenerate, as a result of which the methods applicable in Cauchy's problem and in a mixed 
problem are not applicable here. 

The majorant M i will be chosen so that Eqs. (4.4) will admit a nontrivial group of 
extensions of independent and dependent variables. The solution of system (4.4) will be 
found in a class of solutions invariant [3] relative to extensions. For any given analytic 
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function r of the variables T, ~, 6, A, P, B, Y in the neighborhood of the point ~ = ~ = 6 = 
A = P = B = Y = 0, a majorant of the following form can be found: 

M = K [ ( t  - -  K~)( t  - -  m.t~)(~ - -  m~A)(l - -  m aB)(l - -  m ~ P ) ( t - -  m~Y)(l - -  m ~ ) ]  -~ 

by choosing large enough constants K and mj. Together with M, the function M i = Mo(l -- 

K ~ ) - l i ,  w h e r e  M o = K [ ( l  - m~(i  --  K~)7~O (~- -  m~A(t -- K~) "-~) • 

• (1 - -  m~B (t  - -  K ~ ) - % ) ( I  - -  m~P (1 - -  K~) -=~) x 

• (1 - -  m~Y (1 - -  K~) - % )  (1 - -  m68)] - t  
with integers nj ~ 0 (j = 1 .... , 5) I i >71 will be a majorant of r This follows from the 
fact that (I -- K~)-n ~I with n>>0 i>> is the majorizing relation). Let us choose constants 
K and mj such that the function M is a majorant of all Mi from (4.4). Now, if we examine a 
system of the form (4.4) with M~ =.Mo(l -- K~) -li for i~/=11, 18, 19, 20, 21, M~ = (I -- 
K~) -l~ M i = Moo(l -- K~) -li for i = 18, 19, 21, and M~o = 2KMoo(l -- K~)-12o (Moo Mo]ms=o) 

with nj~ 0, I i ~l as yet undetermined, then this system also is a majorant for the starting 
problem. The choice of nj, li is made in such a way that the system (4.4) admits a stretch- 

ing transformation: 

( l - - K ~ ) . - + z ( l - - K ~ ) ,  x--+• A-+• B---~x%B, 
P.-+ • y ~ xn~y, ~.-+ ~, 

where x is the stretching parameter. The condition of invariance of (4.4) leads to a linear 
homogeneous system of equations for the indices I i with a number of equations that is less 
than the number of unknowns. One of the solutions has the form 14 = 15 = l~ = ltl = I~2 = 
lla = I, 12o = 2, 12 = !io = 11~ = 117 = 121 = 122 = 3, ls = 1~9 = 4, 11 = ls = 114 = 12~ = 

127 = 5, 19 = lls = 6, 17 = 113 = 124 = 7, 12s = 8, 123 = 9. In this case nl = 5, n2 = 4, 
n~ = 3, n4 = 2, ns = 0. The invariant, relative to the stretching as indicated, solution is 
sought in the form 

A = (i  - -  K~aAo(~, 5), B = (t  - -  K~)~Bo(~, 5), P = ( l  

--  K~Po(~,  6), Y = Y(~,  6), ~ = ~(t - -  K~)  -~. 
From (4.4), we obtain a system for determining the functions Ao, Bo, Po, Y: 

Ao~ =Mo(Ao~+Po~+Bo~+Y~ + 1), Po~ =Mo(Bo~  + A o ~ + P ~ + B o ~ +  t) ,  ( 5 . ! )  
4K~Bo n - -  3KBo = 5K~Ao n - -  4KAo "Jr 

+ (Mo -- K)~Bo n + Mo~(Ao~ + Po~ + Bo~ + Y~ + i), 

NYn + Y = Moo(5KNPon + Ao + Bo) + NMo(Bon + Ao~ + Po~ + Bo~ + Y~ + i)" 

We note that Mo -- K>>0, i.e., it is a majorant type function. We seek a solution of system 
(5.1) that vanishes at N = 0. From the last two equations in (5.1), we obtain equations for 
determining the derivatives of Bo and Y at ~ = 0: 

on+roB o 5n - -  40n+mA o n 0 n-l+m 
0~n0~m = 4 n  30~n06m +4nU-3o~m[(M~176176176  +P~176 

O~O6=O~+=Y --  n ~n I o~~ [ 5KM~176 P o~ + ~ l  o_~Moo(Ao+Bo) + Mo (Bo n +Ao~+po~+Bo~+y~+l)] .  

It follows from these equations that the derivatives determined are nonnegative, while the 
majorants, with respect to the last two equations in (5.1), are the equations: 

Boy = (5/4)Ao~ + (Mo - -  K)Bo~ + 4Mo(Ao o + Po8 + BoB + Y8 + 1), ( 5 . 2 )  
o Y~ = 5KMooP ~ + -~ (Moo (A o + Bo) ) + M o (Bo~+Ao8 + P ~ +  Bo~ + Y~ + 1). 

The s y s t e m  f o r m e d  by E q s .  ( 5 . 2 )  and  t h e  f i r s t  two e q u a t i o n s  i n  ( 5 . 1 )  can  be  s o l v e d  f o r  t h e  
derivatives with respect to ~ (Mo -- K vanishes at q = ~ = 6 = Ao = Bo = Po = Y = 0). Accord- 
ing to the Cauchy--Kovalevsky theorem, this system has an analytic solution that vanishes at 
n = 0. Therefore, the existence of an analytic solution of the majorant system such that 
A = P = B = 0 at T = 0, while Bl~=o~0 has been proved (since Bo = 0 at n = 0, Bo = nBoo(D, 
6), where Boo is a majorant type function, B = T(! -- K~)-2Boo(~, 6) >>0). The existence of 
an analytic solution of the problem (3.3) is thereby proved. 

6. Transformation to the Variables x, t. In this section, we shall prove the single- 
sheet nature of the mapping x = x(T, %, B, Y), t = t(T, B, Y) with small T(T =/=0) in the 
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vicinity of Yo. This makes it possible to invert the mapping indicated and to obtain a solu- 
tion of the problem in the variables x, t, analytic in this neighborhood, with the exception 
of the point Yo. We shall prove that for small ~, from the equalities X(Tx, ~, ~, yz) = 

X(T2, ~2, B2, Y=), T~ + to($~, 7~) = z2 + to(~2, ~(2), follow the equalities T~ -- ~ = ~ -- 
~2 = B~ -- 82 = ~ --Y2 = 0. Let ~ ~2, Tz > 0. In view of (2.1), the following equation 

is valid : 

x ( , ,  ~, ~, ?) = xo(~, ~) + S f (z', ~, ~, ~/) de .  (6 .1 )  
0 

In a neighborhood of the point Yo, where If] ~< K~ (KI is a positive constant), the inequality 

is satisfied. In view of the equality ~ -- T2 = to(B2, ~2) -- to(Bz, y~) and the properties 

of the given mapping x = xo(B, y), t = to(8, Y), a K2 > 0 is found such that 18x -- B21 + 
iYx - y2] ~<K2(Tx + T2). The equality x(~x, ~x, 8x, Y~) = X(T~, ~2, 82, Y2) in view of (6.1) 
is written in the form 

Xo (~1, ~1 ) -  Xo (~2, ~ )  + (to (~, ~ ) -  to (~, ?,))f (0, ~, ~,  ~)  + (6 .2 )  
+ ~1 (f  (0, ~1, ~1, ~1) - -  f (0,  ~$, ~$, y~)) 

0 
"{2 

--  f (0, ~, ~ ,  Y2)] de  + ~ If (z', ~,  ~ ,  Y~) --  f (0, ~,  g~, ?~)1 d~'. 
"(1 

From this relation, we obtain the inequality 

I(x0~(~, ~) -- t0~(~, ~o)[(0, $,., g~, ~))(~, -- ~) + (x0v(~, ~) - -  

- t0~(~, ?~) t(0, ~,, ~, y=)(y~ - v~)l ~< K~,,(I$, -- ~,I + Ig~ -- g~l + In -- ?,I), 

where the positive constant Ks depends on K2, maxima of the first derivatives of f, second 
derivatives of xo, to in the neighborhood examined. In view of the linear independence of 
the vectors x$ -- tBf, xy -- tyf at yo, we can find o5 > 0, K~ > 0 such that for 0 < Tx < ~ 

Now, from relation (6.2), it 

Xo~ ( ~ ,  v~) ( ~  

where fi = f(0, ~i, B2, Y2). 
!klcI I -I 

[ml-X(f .m)= [vlZ+2~lkl ~ 
lvt.  lkl 

Forming the s c a l a r  product  of  
t i o n s ,  we ob ta in  the e q u a l i t y  

(6.3) 

follows that 

- ~ )  + x ~  C~, Y~) (v~ - ~ )  + n t~ - ~,% = 0 ( ~ l  ~ - ~ D, ( 6 . 4 )  

We introduce the analog to the Mach angle ~: sin IkI~ = 
Then from Eq. (2.2), we obtain the equations 

sinikl(0+c~),  ( f . (k•  = ]ml~- -  Ivl~+2*lklz  cos lkl (0+c0 
cosl k] c* ]v i  cosl kl~z "lm[" 

relation (6.4) with m and k x m and using the preceding equa- 

t s in lk l (01+~l )  T~ t sin~kl(0~+cc~) 
= - - - -  + o ( ~ 1 ~ -  ~,1),  lk'--] lvxlcoslkt% ~ l k l  Iv~lcoslk~% 

~o~ I k I (% + ~ )  = !.~ ~o~ I k l (% + %) + 0 ( ~  I ~ - -  ~ D" 

The ind ices  1 and 2 i n d i c a t e  the values  of the cor responding  f u n c t i o n s  a t  the po in t s  (0, ~ ,  
82, Y2) and (0, ~2, B2, u From these equalities, follows the inequality 

where the positive constant K5 is chosen uniformly with respect to ]k I. According to (3.]), 
r varies strictly monotonically with respect to ~ at T = 0. In view of the conditions of a 
normal gas, the same is valid for 8 + ~. For this reason, there exists a positive o~ such 
that 181 + ~i -- O2 -- ~2] ~> o~I~i -- ~2I. For 0 < TI < min(~5, osK~1), it follows from the 
last inequalities that ~ = ~2 and then, from (6.3) follow the equalities B1 -- 82 = YI -- Y= = 
0 and T~ = ~2. The single-sheet nature of the mapping with r ~0 is proved. 
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This completes the proof of the theorem formulated in Sec. 2. 

For a complete solution of the piston problem, it remains to construct a solution of 
the mixed problem for Eqs. (l.l) with the impermeability condition on F' and the condition 
of continuous touching to the centered wave on the characteristic F2. Here the conditions 
for the consistency of the given boundary value problems are already satisfied. We ~ote that 
the result obtained can also be used in problems of describing the interaction of strong dis- 
continuities. The case when the surface Yo lies in the hyperplane t = 0 in E 4 is examined 
in [4]. Such centered waves arise in describing the decomposition of an arbitrary discon- 
tinuity on a curvilinear surface [5]. 

I thank L. V. Ovsyannikov for his attention to this work. 
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INJECTION EFFECT IN A CONTAINED EXPLOSION IN A 

LIQUID-SATURATED MEDIUM 

A. V. Vasil'ev, E. E. Lovetskii, 
and V. I. Selyakov 

UDC 534.222:532.546 

The escape of gaseous products from the cavity of a contained explosion into dry rock 
has been considered [I, 2]. The escape is due to the residual elevated pressure in the 
cavity. However, a contained explosion in a liquid-saturated medium may result in an ele- 
vated pore pressure around the explosion cavity, which exceeds the pressure in the cavity 
itself. This is possible because the fluid in the pores is compressed when the shock wave 
passes, and the strength of the skeleton means that the pressure does not revert to the ini- 
tial value on unloading: there remains a residual pressure in the pores of the order of the 
strength of the skeleton. On the other hand, the pressure in the explosion cavity at the 
end of the explosion is close to the lithostatic pressure, i.e., below the pressure in the 
pores. Therefore, the elevated pore pressure may cause implosion, namely injection of liquid 
into the cavity. This alters the temperature and pressure within the cavity, which in turn 
influences the cavity collapse. 

Here we consider theoretically the implosion effect and the influence on the heat and 
mass transfer on explosion in a liquid-saturated medium. 

Model for Heat and Mass Transfer after Explosion in a Water-Saturated Medium. It has 
been pointed out [3] that there may be a rise in the pore pressure after a contained explo- 
sion for the model of ~]. Figure I shows a typical graph for the pore pressure. The rise 
in pore pressure after the passage of a shock wave is indirectly confirmed by the ground 
water-level measurements after explosions [5]. Therefore, an explosion in a saturated rock 
may result in filtration not from the cavity but into it. When the liquid enters the cavity, 
where the temperature is about 104~ and the pressure about 15 MPa, the liquid evaporates, 
taking up energy from the rock vapor, which is thereby cooled. When that vapor reaches a 
state of saturation, it begins to condense and release latent heat. This may raise the 
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